Molecular evolutionary mechanisms driving functional diversification of α-glucosidase in Lepidoptera
نویسندگان
چکیده
The digestive tract of lepidopteran insects is unique given its highly alkaline pH. The adaptive plasticity of digestive enzymes in this environment is crucial to the highly-efficient nutritional absorption in Lepidoptera. However, little is known about the molecular adaptation of digestive enzymes to this environment. Here, we show that lepidopteran α-glucosidase, a pivotal digestive enzyme, diverged into sucrose hydrolase (SUH) and other maltase subfamilies. SUH, which is specific for sucrose, was only detected in Lepidoptera. It suggests that lepidopteran insects have evolved an enhanced ability to hydrolyse sucrose, their major energy source. Gene duplications and exon-shuffling produced multiple copies of α-glucosidase in different microsyntenic regions. Furthermore, SUH showed significant functional divergence (FD) compared with maltase, which was affected by positive selection at specific lineages and codons. Nine sites, which were involved in both FD and positive selection, were located around the ligand-binding groove of SUH. These sites could be responsible for the ligand-binding preference and hydrolytic specificity of SUH for sucrose, and contribute to its conformational stability. Overall, our study demonstrated that positive selection is an important evolutionary force for the adaptive diversification of α-glucosidase, and for the exclusive presence of membrane-associated SUHs in the unique lepidopteran digestive tract.
منابع مشابه
Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life
Microtubules are essential for various cellular activities and β-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom. Phylogenetic analysis showed that α-/β-tubulin g...
متن کاملMolecular evolutionary mechanisms driving functional diversification of the HSP90A family of heat shock proteins in eukaryotes.
The ubiquitous and conserved cytosolic heat-shock proteins 90 (HSP90A) perform essential functions in the cell. To understand the evolutionary origin of HSP90A functional diversification, we analyzed the distribution of HSP90A family from 54 species representing the main eukaryotic lineages. Three independent HSP90A duplications led to the paralog subfamilies HSP90AA (heat-stress inducible) and...
متن کاملMolecular docking studies of some flavone analogues as α-Glucosidase inhibitors
Background: High Blood glucose levels is one of the main problems in diabetes. α-glucosidase with decomposition of polysaccharides increases the absorption of carbohydrates from the intestine, resulting in blood glucose upsurge. Inhibition of this enzyme is one of the most important strategies for treatment of diabetes. Objective: The aim of this study was to investigate in silico inhibitory ef...
متن کاملBIOINFORMATICS EVALUATION OF T.FOENUM ACTIVE COMPOUNDS IN SUPPRESSION OF Α-GLUCOSIDASE ENZYME
Background: Diabetes mellitus is a metabolic syndrome characterized by elevated blood glucose. The α-glucosidase enzymes that are found in the small intestine are responsible for the hydrolysis of carbohydrates. The aim of this study was to Bioinformatics evaluation of T.foenum active compounds in suppression of α-glucosidase enzyme. Methods: This study was a descriptive-analytical method. For...
متن کاملSynthesis and Molecular Docking studies of Some Tetrahydroimidazo[1,2-a] pyridine Derivatives as Potent α-Glucosidase Inhibitors
KAl(SO4)2.12H2O is found to efficiently and heterogeneously catalyze the one-pot three-component reaction of 2-(nitromethylene)imidazolidine, malononitrile and aldehydes under mild conditions to afford the corresponding tetrahydroimidazo[1,2-a]pyridine in good yields and short reaction times. Docking study of some compounds in the active site of α-glucosidase demonstrated that these...
متن کامل